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Abst rac t  

We give a necessary and sufficient condition for a reaction graph of a degenerate 
rearrangement to be connected. This condition is formulated in terms of vertex stabilizers 
of the automorphism group of a molecular graph. The condition is illustrated on several 
examples, including the reaction graph of bullvalene. We consider different mathematical 
models for tile construction of reaction graphs and state the problem: which of the 
models is more adequate? 

1. In t roduc t ion  

The investigation of  reaction graphs for degenerate rearrangements of  chemical 
compounds has gone through several stages. In the initial stage, concrete phenomena 
were investigated by chemists (see, for example, [ 1 -  3]) without the use of  extensive 
mathematical tools. In the second stage, the group-theoretical technique was applied 
and, first of  all, the excellent series of  papers by Randi6 and his coworkers must 
be mentioned [4,5]. Their first results were obtained by ad hoc methods, but in the 
latest papers (see, for example, [6]), the authors were faced with the need to use 
powerful computer programs. 

There are several other publications, for example [7 -10] ,  which can be 
characterised by the systematic use of the more complicated group-theoretical techniques 
(double cosets, suborbital graphs, and so on). In particular, Jones and Lloyd [10] 
have given a striking survey of  different investigations of  reaction graphs, which 
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is written in terms of permutation group theory. They have shown that for the most 
part, concrete results on reaction graphs can be obtained in a unified way by means 
of permutation group theory. This way is related to the often differently named 
notion: 2-orbits of permutation groups (in the sense of [11]), suborbital graphs (in 
the sense of [12, 13]), and colour graphs, see [14]. 

Jones and Lloyd [10] have raised the following important question: how to 
determine when the reaction graph is connected? They have given a partial answer, 
but have also emphasized that an exhaustive answer is still unknown. 

The goal of this paper is to give a complete answer to this question. In other 
words, we shall give a necessary and sufficient condition for a reaction graph to 
be connected. In turn, this condition is based on the known criterion from algebraic 
combinatorics for the connectivity of 2-orbital graphs. We apply this criterion to 
several interesting chemical reaction graphs, thereby giving an illustration of the 
technique developed. Particularly, we consider three different models of a reaction 
graph for the Cope rearrangement of bullvalene. Two of these models yield graphs 
with only 604,800 vertices, but not 1,209,600 vertices, as was stated in all previous 
publications and which can be obtained using the third model. We compare these 
different mathematical models for the construction of reaction graphs, and state the 
problem: which of tile models is more adequate? 

In this papeF,~ we will use some elementary notions and facts from 
permutation group theory; references can be found in books [15-17] and papers 
[11-14,18-20].  

We have tried to make this paper relatively self-contained, providing in % 

sections 2 and 4 a small group-theoretical guidance. Section 3 contains the formulation 
of the main problem, while section 5 contains a criterion for the connectivity of a 
reaction graph (having the transitive automorphism group). Finally, the concrete 
example of the bullvalene case is considered in section 6. Section 7 includes a brief 
discussion of the presented results. Some additional comments related to the referee's 
opinion (Professor D.J. Klein) are collected in section 8. 

2. Prel iminaries  

We consider two kinds of chemical graphs: molecular and reaction graphs. 
A molecular graph represents a structural formula of an organic compound; it can 
have multiple edges and marked vertices (marks are the atom names). A reaction 
graph has different structural formulae as the vertices; two vertices are adjacent if 
there exists a rearrangement of a given type between them. If all vertices of a 
reaction graph represent the isomorphic structural formula, then we have a reaction 
graph of a degenerate rearrangement. If valencies of vertices of a reaction graph 
are greater than 1, then we have the case of a highly degenerate rearrangement. Finally, 
only those reaction graphs for which every edge represents a rearrangement of the 
same type will be considered. 
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Graphs will also be considered from a purely mathematical point of  view. We 
shah usually speak of  undirected graphs without loops and multiple edges (strict or 
simple graphs). In general, graph F is a pair F = (V, E), where V is a set of  vertices 
and E is a subset of  the set V 2 = {(a, b) l a, b ~ V}. In this case, we speak of  a graph 
with numbered vertices (see section 4 for details). 

Let S(V) be a symmetric group of  a set V; it consists of  all permutations of  
the set V. If IV [ = n ( IV I is the cardinality of  a set V), then the notation S,, is also 
used for the symmetric group S(V). The notation a g = b means that a permutation 
g transforms an element a into b. For every subset E c V 2, we can consider the 
induced action of a permutation g E S(V): E g = {(a g, b g) I(a, b) ~ E}. For every 
graph F = (V, E), an orbit of  this induced action of  S(V) can be interpreted as an 
"abstract" graph. If E g = E, then g is an automorphism of graph F. All automorphisms 
of  F form an automorphism group Aut(F) of F. Every automorphism group is a 
partial case of  a permutation group, where permutation group G is any subgroup 
of  the symmetric group S(V). Usually, a permutation group is considered as 
a pair (G,V);  in this situation, one can say that G acts on a set V a n d G h a s a  
degree n = I VI. 

In addition to the symmetric group, we shall need the alternating group A n, 
which consists of  all even permutations of  Sn, and the dihedral group D n of  
degree n and order 2n (see below). 

Let A be a subset of  a group G and let every element of  G be represented 
by a product of  several elements of  A (the sequence of  these elements can contain 
the same element several times); then the group G is generated by A, and this fact 
can be noted as G = (A). For example, the dihedral group D n can be obtained in 
the following manner: D n = (g, t), where 

and 

1 2 3 ... n / 
g = ( 1 , 2  . . . . .  n ) =  2 3 4 ... 1 

(1,2)(3,  n)(4, n -  1) 

t =  (1,2)(3,  n ) ( 4 , n -  1) 

... ( k+  1 , k +  3 ) ( k + 2 ) ,  

... ( k + l , k + 2 ) ,  

i f n = 2 k + l ,  

if n = 2k. 

A subset 0 c V is an orbit of  permutation group (G, V) (a 1-orbit in the 
terminology of  [11]) if for any two elements a, b ~ 0 there exists a permutation 
g ~ G such that a g = b. The permutation group (G, V) is called transitive if V is 
its orbit, otherwise (G, V) is an intransitive group. Let G,, = {g ~ G la g = a} be a 
subset of  those permutations of  G which fix an element a ~ V. Ga is a subgroup of  
G which is called a stabilizer of the element a in the group G. It is well known that 
for a transitive group (G, V), the index [G : G a] = I G [ / I Gal of  a stabilizer of  any 
element/z ~ V coincides with the degree IV J of  the group G. Moreover,  in this case 
the action of  the group G on the set V is isomorphic (as a permutation group) to 
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the action of  G on the set {G,, x I x ~ G} of different cosets of the subgroup G,, in 
the group G. The transitive permutation group (G, V) is primitive if for every a ~ V 
the stabilizer Ga is a maximal subgroup of group G (this means that G = <G,,, g) 
for any g ~ Q ) .  Otherwise, the transitive group (G, V) is called imprimitive. 

3. Formula t ion  of the problem 

Let us consider two different kinds of permutation groups. The groups of  the 
first kind are automorphism groups of molecular graphs (or certain subgroups of 
these groups). 

Let F be a molecular graph, V the set of its vertices and Aut(F) its automorphism 
group. Let L be an n-element subset of the set V (in particular, it may be that L = V). 
Let the action of Aut(F) on the set V be well defined (this means that L is invariant 
under the action of Aut(F), i.e. L is the union of suitable orbits of Aut(F)) and faithful 
(this means that only the identical permutation of Aut(F) fixes all vertices of L). 
The additiom~ requirements for the set L will be considered later. Let N =  {1 . . . . .  n}. 
Then, we can number elements of L in such a way that different vertices of  L will 
correspond to different numbers of N. The elements of V \ L  have not taken part in 
the numbering. Let m = I Aut(F) I and v = n!/m = [Sn:Aut(F)]. One can easily show 
that in this situation the abstract graph F has exactly v different numberings 
lP 1, F 2 . . . . .  F v of its vertices. Let f~ = {F 1, lP 2 . . . . .  I v } .  Then we can consider another 
kind of permutation group, namely the induced action of S,, on the set ~ .  

Now let us consider a degenerate rearrangement of F. Then we can form a 
new undirected reaction graph R = (fL E) for this rearrangement in the following 
manner: two vertices F/ and Fj are adjacent in R if there exists an elementary 
rearrangement of a fixed (given) type directly between ~ and Fj. By definition, this 
reaction graph is invariant under the action of the symmetric group Sn. However, 
usually this graph is not connected, so it can be represented as a union of its disjoint 
connectivity components. The most ordinary case is when every component consists 
of  only two vertices (two numberings). This is the case of the usual degenerate 
rearrangement, where each component adequately represents the type of rearrangement. 

A more complicated and rare case is when the size of the connectivity components 
is greater than 2. Just this very case is by us called the case of  a highly degenerate 
rearrangement. There are two most intriguing questions related to this case: 

(1) How large is the number of vertices in any connectivity component R of  a 
reaction graph R? 

(2) What is the full automorphism group Aut(R) of a graph ,R? 

We shall not consider the second question here (it will be the subject of  our 
following publications). We only stress that the group Aut(R) can be determined 
(using the operation of the wreath product) if Aut(R) is known. 
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Thus, the first question will be the further focus of  our present exposition. 
This question admits a partial formulation: when is the graph R connected? It must 
be mentioned here that from a chemist's point of view, namely the graph ~' is really 
interesting (see below). Hence, in some situations the notion of  a reaction graph is 
identified just with the graph R. 

First of all, two relatively simple examples will be considered in order to give 
an illustration of all notions. 

Example 1: 1, 2-shifts in the carbonium ion 

This arrangement was first considered by Balaban et al. [2]. Two isomorphic 
graphs F 1 and F 2 are depicted in fig. 1.1, 2-shift transforms F 1 into F z and vice versa. 

Id H H 
I + I I 

H--C--C--H = H--C--C--H 
I I + I 
H H H 

Fig. 1. 1, 2-shift in the carbonium ion. 

Here, AutO-') -- $3 x S 2. The group H = Aut(r)  acts on the set V, which consists 
of  five hydrogen and two carbon atoms. Let L = V. Then we have v = 7!/12 = 420; 
hence, ~q = {1" 1, F 2 . . . . .  I'420} is the set of all different numberings of F. Four of 
these numberings are symbolically depicted in fig. 2: F 1 and three other numberings 

3 

4 

3 

7•5 
" " q  2 

Fig. 2. Particular numbering of a carbonium ion (fig. 1) and three of its different 1, 2-shifts. 
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that can be directly obtained from F~ via the 1, 2-shift. One can easily see that for 
these four numberings, the carbon atoms have a restricted set of  numbers: {6, 7}. 
Evidently, this property will be fulfilled for all numberings of  ~'. Hence, we can 
consider a subset £2' of  D; in this subset, all hydrogen atoms have numbers only 
from the set {1, 2, 3, 4, 5}. There are exactly 2.5!/12 = 20 numberings which satisfy 
this requirement. So, the connectivity component .R consists of  at most 20 vertices. 
It was shown in [2] that R actually consists of  20 vertices. 

These vertices can be described in the following manner. Let us fix our 
attention on the carbon atom, having the number 6. Then, every numbering of D'  
is completely defined by a set of  numbers of hydrogen atoms which are adjacent 
to the carbon atom having the number 6. Hence, every numbering of £2' can be coded 
by means of 2- or 3-element subsets of  the set {1, 2, 3, 4, 5}. There are exactly 20 
such subsets; this implies that I f2'l = 20. Finally, using fig. 2, we can note that in ~' 
a 3-element subset A can be adjacent only to a 2-element subset B, these subsets 
being adjacent if and only if B c A. We obtain that the graph R is a bipartite cubic 
graph having 20 vertices. This graph is well known in algebraic combinatorics as 
the doubled Petersen graph or the Desargues graph [21] (see also [2,22]). One of 
the graphical presentations of R is shown in fig. 3. We shall return to the consideration 
of  this example in section 5. 

(4,aJ 

{zs) ,(t,3) 

12, ,sJ 

Fig. 3. The reaction graph for 1,2-shifts in the carbonium 
ion is isomorphic to the doubled Petersen graph. 
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Example 2: 1, 5-shifts in 1, 2, 3, 4, 5-pentachlorocyclopenta-2, 4-diene 

Here, molecular graphs F 1 and F 2, representing one edge of  the reaction graph 
R, are depicted in fig. 4. 

Ce 

Ce ce C£ cg 

C Ce 

Ce C~ 
Fig. 4. 1, 5-shifts in i, 2, 3, 4, 5-pentachlorocyclopenta-2, 4-diene. 

Aut(F) is a permutation group of order 2. In the rearrangement, only carbon and 
hydrogen atoms are involved -hence, n = 6. This implies that v = [ S 6 : A u t ( I - ' ) ]  = 6 !]2 = 360. 
The reaction graph consists of  360 vertices. It is easy to see that the connectivity 
component  R in this case includes only 5 vertices (see fig. 5). So, we once more 

.6" 

4 2 

G3 
z¢ 

\ 
4 2 

at 

4 2 

-t 2 

/4 

I 
4 2 

z/ 

Fig. 5. Connectivity component of the reaction graph 
for 1, 2, 3, 4, 5-pentachlorocyclopenta-2, 4-diene. 

.3 
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have an example of a situation where R . R .  In this situation, the connectivity 
component R gives an adequate representation of the rearrangement process - it is 
really the desired reaction graph. 

4. 2-Orbits of permutat ion groups 

Let (G, ~)  be a permutation group and (a, b) a fixed pair of  elements of ~.  A 
2-orbit ~ of a permutation group (G, ~)  is the set q) = {(a g, b g) I g ~ G}. If (G, f2) is 
a transitive group, then it always has a 2-orbit ~0 = {(a, a) [a ~ f~}, which is called a 
trivial (reflexive) 2-orbit. All other 2-orbits of a transitive group are called nontrivial or 
antireflexive. 

With every 2-orbit q~; of a group (G, ~ )  one can associate a graph F~ = 
F(q~i) = (f2, ~i),  having ~ as the set of vertices and q~i as the set of arcs. Graph F 0 
includes only loops at every vertex. If the binary relation ~i  is symmetric, then the graph 
F/can be considered as undirected (in this case, we identify any pair (a, b) and (b, a) 
of opposite arcs with the edge {a, b}). 

It is well known (see, e.g. [23]) that a transitive permutation group (G, ~), having 
d antireflexive 2-orbits, is primitive if and only if all graphs F/associated to antireflexive 
2-orbits q~;, 1 < i < d of a permutation group (G, ~), are connected. 

Example 3 

Let us consider the dihedral group D 6 of order 12. Below, a complete list of its 
permutations is presented: 

g~ = (1) (2) (3) (4) (5) (6), 

g2 = (1, 2, 3,4, 5, 6), 

g3 = (1, 3, 5) (2, 4, 6), 

g4 = (1,4) (2, 5) (3, 6), 

g5 = (1, 5, 3) (2, 6, 4), 

g6 = (1, 6, 5,4, 2, 2), 

g7 = (1) (2, 6) (3, 5) (4), 

g8 = (1, 2) (3, 6) (4, 5), 

g9 = (1, 3) (2) (4, 6) (5), 

glo = (1, 4) (2, 3) (5, 6), 

glx = (1, 5) (2,4) (3) (6), 

g12 = (1, 6) (2, 5) (3, 4). 

Using this list, one can easily construct a complete list of  2-orbits of  the 
group D 6 in its natural action on the set N = {1, 2, 3, 4, 5, 6}, see fig. 6. In this 
action, D 6 has three antireflexive 2-orbits: o) l, q~2 and ~3- Two of  these 2-orbits 
(~2, ~3) give a disconnected graph; hence, the group D 6 is imprimitive. The graph 
P 1 is connected. 

The natural question can be raised: when does a given 2-orbit lead to a 
connected graph? The answer to this question is well known in algebraic combinatorics. 

As was noted in [16], the first publication of this result is due to Glauber- 
man [24]. 
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6 

4 "l 4 

3 S 3 3 

Fig. 6. Graphs associated to 2-orbits of the dihedral group D6, 

PROPOSITION 1 

Let (G, f2) be a transitive group, a 6 fL ~i  any antireflexive 2-orbit of  (G, f2) 
for which (a, b) ~ ~i .  Let a g = b for some g E G. Then the graph F/=  (~ ,  ~ i )  is 
connected if and only if (Ga, g) = G. 

We shall also use the following more general result, which can be proved 
similarly to proposition 1. 

PROPOSITION 2 

Under the same conditions as in proposition 1, the number of  vertices in a 
connectivity component of the graph F; = (~, q~i) is equal to the index [(G,,, g):Ga]. 

We give an illustration of these propositions for the case of D 6. Here, G = D 6, 
= N = {1, 2, 3, 4, 5, 6}. Let a = 1, then Go = {gl, g7} = (gT) = ((1) (2, 6) (3, 5) (4)). 

For 2-orbit ~1: b = 2, g = gs, (G,~, g) = (g7, g8) = D6; hence graph F 1 is connected. 

For 2-orbit ~2: b = 3, g = g9, (Ga, g) = (g7, g9) = $3, where S 3 acts intransitively, 
having two 1-orbits: { 1,3, 5} and {2, 4, 6}. S 3 ~ G; hence, graph F 2 is not connected, 
its connectivity component consists of  [(Ga, g):G,~] = 6/2 = 3 vertices. 

For 2-orbit ~3: b = 4, g = gl0, (G,~, g) = (g7, glo) ~ K, where K is a Klein 
four-group. K ~ G; hence, graph F3 is not cgnnected, its connectivity component 
consists of  [(G a, g):G a] = 4/2 = 2 vertices. 

Further, we shall consider the case where G = S,, and f2 is the set of  different 
numberings of a certain molecular graph F. In all known cases of  highly degenerate 
rearrangements, a group Aut(F) acts transitively on the set of  numberings which can 
be directly obtained (by means of a rearrangement of  given type) from the initial 
numbering F 1 of  F. This implies that a reaction graph R is a suitable 2-orbit of  the 
action (S,,, f~). 
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5. Criterion for connectivity of a reaction graph 

Now we can formulate the main result of this paper (preliminary announcement, 
see [25]). 

THEOREM 3 

(Criterion for the connectivity of an edge transitive reaction graph). 

Let F be a molecular graph for which a highly degenerate rearrangement of  
given type exists. Suppose exactly n vertices of F change their neighbourhood in 
F during the whole rearrangement process. Let H = Aut(F) be an automorphism 
group of F, acting on the set { 1, 2 . . . . .  n} and represented as Aut(Fi) for a certain 
numbering F i . Let I-]i and Fj be two numberings of F which are adjacent in reaction 
graph R. Let g : F  i ---) F) be an isomorphism between graphs F/ and ~.. Then: 

(1) the number of vertices in the reaction graph R is equal to the index [S,,:H]; 

(2) R is connected if and only if Sn = (H, g); 

(3) the number of vertices in the connectivity component /~ of the graph R is equal 
to the index [(H, g):H]. 

The proof of the theorem can be easily obtained from propositions 1, 2 and 
the above-mentioned facts about 2-orbits of permutation groups and reaction graphs. 

In order to give a preliminary illustration of theorem 3, we return to example 1. 
Two numberings F 2 and F 1 of the carbonium ion, representing the adjacent vertices 
of the reaction graph, are depicted in fig. 7. 

2 7 , / 0  4 
v ...... v - -  

Fig, 7. Two numbcrings of the carbonium 
ion, which are adjacent in the reaction graph. 

Here, n = 7, H = Aut(F2) _= S 3 x S 2 = ((1, 2, 3) (4, 5) (6) (7), (1, 2) (3) (4) (5) (6) (7), 
(1) (2) (3) (4, 5) (6) (7)). There are twelve different isomorphisms from numbered 
graph F 2 to numbered graph F I. One of them can be immediately observed from 
fig. 7: 

(12345 76):(1 3,5,2,4 (6,7) 
g =  3 4 5 1 2 7  
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The group (H, g) is obviously intransitive, having two orbits: {1, 2, 3, 4, 5} and 
{6, 7}. Let us consider the action of(H,  g) on the set { 1,2, 3, 4, 5}. It is a transitive 
group of prime degree n = 5, hence it is primitive; this group contains a transposition. 
It is well known that a primitive permutation group which contains a transposition 
is a symmetric group. Hence, the action of (H, g) on {1, 2, 3, 4, 5} coincides with 
S 5, and (H, g) =S 5 x $2. Using theorem 3, we obtain that the connectivity component 
of the reaction graph contains 20 vertices. We have obtained the same result as in 
section 3, where the reaction graph was considered on the "visual" level. 

Example 2 provides an illustration of a similar situation. Here (see fig. 5), 
n = 6, H = Aut(F1) = ((1, 2) (3, 5) (4) (6)), 

( 1 2 3 4 5 6 ) = ( 1 , 2 , 3 4 ,  5)(6). ( H , g ) = D s ; ~ S 5 .  
g =  2 3 4 5 1 6  

Hence, the reaction graph is not connected and its connectivity component consists 
of  [Ds:H] = 10/2 = 5 vertices. As in example 1, the result of using theorem 3 agrees 
with the result of the direct construction of the connectivity component. 

It is clear that a systematic application of theorem 3 requires solving the 
following problem: to describe the permutation group generated by a given set of 
its permutations. This problem can be solved in a general case with the aid of a 
computer (see, for example, [26,27]). However, for all considered cases it was 
always possible to find a group (H, g) using only hand computations. These computations 
are based on combining general facts from permutation group theory [ 15] with concrete 
information about primitive permutation groups of the given degree (see, e.g. [28]). 

Usually, the group H, which is mentioned in theorem 3, is the full automorphism 
group Aut(F) of the corresponding molecular graph F. In principle, it is possible 
to use in the role of H certain subgroups of Aut(F), especially the subgroup of 
index 2, which is induced by the proper rotations of the spatial model of F (in this 
case, Aut(F) is induced by rotation and reflections). This latter case reflects the fact 
that we distinguish between the spatial model of F and its mirror image. From a 
mathematical point of view, we can use as H any permutation group. However, one 
can take into account that changing H actually leads to a new mathematical model 
for the rearrangement process. We shall compare two different models as a concrete 
example in the next section. 

Finally, we want to mention one more problem, related to the selection of the 
set L = { 1, 2 . . . . .  n}. In some cases, there are several possibilities to establish this 
set and, at first sight, the mode of the connectivity component ~' depends on the 
set L. However, there is no real dependence of R on L. For simplicity, we do not 
give a rigorous proof of the corresponding proposition here, restricting ourselves 
to one example. 

Let us again consider example 2. Here, we can put L = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }, 
where 7 -  11 are the numbers of five chlorine atoms. Then, the reaction graph R has 
[Sll:H] = 11 !/2 = 19,958,400 vertices, but the connectivity component R consists 
of the same number (= 5) of vertices. 
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6. The case of bullvalene 

The Cope rearrangement of bullvalene C~oHxo is, of  course, the most famous 
example of a highly degenerate rearrangement. The structure of bullvalene was 
designed by yon E. Doering and Roth [29]; it was synthesized by Schr6der [1] (one 
can find the very intriguing history of the name bullvalene in [30], p. 131). The 
reaction graph R of bullvalene is one of the largest in chemical graph theory: for 
this reason, it was called the Monster graph [6]. 

During many years, it was accepted that this graph consists of  10!/3 = 1,209,600 
vertices (see, e.g. [31]). Such a decision can follow from the opinion that only the 
symmetries of C 3 correspond to free molecular motions (rotations) without the 
breaking (or extreme distortion) of bonds. In this case, the skeleton and its mirror 
image are distinguishable. From our point of view, the full symmetry group of  the 
spatial model of the graph F is isomorphic to its full automorphism group Aut(F), 
i.e. to the symmetric group S 3. Unfortunately, in the literature we could not find 
arguments for the precise decision, but some arguments were kindly provided to us 
by Professor D.J. Klein [32]. His arguments are related, partially, to the Dreiding 
models and to the possible solution of the Schr6dinger equation for bullvalene. For 
this reason, it is natural to consider simultaneously two different models of the 
rearrangement process (in the sense of section 5). Two numberings F 1 and F 2 of  the 
molecular graph F of bullvalene are depicted in fig. 8 (hydrogen atoms are omitted); 
the Cope rearrangement transforms I~ into V 2 and vice versa. 

4 4 
4 2 

1 , ' 0 ~  8 
9 

Fig. 8. Cope rearrangement in bullvalene. 
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Here, n = 10, Aut(F~) = (h 1 = (1) (2, 3, 4) (5, 6, 7) (8, 9, 10), h 2 = (1) (2, 3) (4) (5, 6) 
(7) (8, 9) (10)). Thcre are exactly six permutations which transform F 1 into F2; one 
of  these is 

[,8 (1 2 3 4 5 6 7 8 9 4)10~ = (1' 8) (2' 5) (3' 9) (4'10) (6) (7)" 
g =  5 9 10 2 6 7 1 3 

Now we shall consider the rearrangement process via two different models. 

Model I. We put H = Aut(F); hence, theorem 3 will be applied in a natural 
way. Let v be the number of vertices of a reaction graph R. Then, v = [Slo:Aut(F1)] 
= [Slo:S 3] = 10!/6= 604,800. 

Let us investigate the group (H, g) = @1, h2, g). The group @1, g) is clearly 
transitive; hence, (H, g) is also transitive. Then let us proceed with a few easy 
calculations. 

t 1 = hi l g = (1, 8, 4, 9) (2, 10, 3, 5, 7, 6), 

t 2 = t 1 hi -1 = (1, 10, 2, 9) (3, 7, 5, 6, 4, 8), 

t 3 = tl t 2 = (1,3, 6, 9, 10, 7, 4) (2) (5) (8). 

Hence, t 3 e (H, g) and t 3 is a permutation of prime order 7. This implies that 
(H, g) cannot be imprimitive (the order of an imprimitive group of degree 10 is 
obviously equal to 2a3/35r for suitable c~, r ,  7); so (H, g) is a primitive permutation 
group. The order of (H, g) has a prime divisor 7. Using the list of  primitive groups 
of  degree 10 from [28], we conclude that (H, g) coincides with A10 or $1o. Taking 
into account that h 2 E (H, g)and  that h2 is an odd permutation, we obtain 
(H, g) =$10. Hence, R is a connected graph, R = R and fi' contains 604,800 vertices. 

Model II. Now we omit permutations from Aut(F) corresponding to the improper 
rotations (= reflections) of the 3D-spatial model of graph F 1 , i.e. we put H = (Aut(F1)) p°s, 
w h e r e  F p°s denotes the subgroup of a group F consisting only of  even permutations. 
This means that now there are v =  [$1o:A3] = 10!/3 possible isomers, each of  
these isomers corresponding to some coset class of  the group $10 over the subgroup 
A 3 = H = (Aut(F1)) p°s = @1). These isomers cannot be interpreted on the purely 
graph-theoretical level, but if we can find a certain 3D-structure of the molecular 
graph F which is chiral, then all coset classes will be in one-to-one correspondence 
with different numberings of this 3D-structure. However, this geometrical point of  
view will not be considered here (it will be discussed elsewhere), and we shall 
remain on the formal group-theoretical level. Among the six permutations which 
transform F i into F 2, three permutations are even (e.g. the permutation g) and three 
permutations are odd (e.g. the permutation ~ = h 1 h 2 g = (1, 8) (2, 5) (3, 10), (4, 9) (6, 7)). 
This leads to the consideration of two new different cases. 
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Model IIA. Here, H = (hi), Cosets H and Hg represent a pair of  adjacent 
vertices of a reaction graph R. The calculations, made as above (model I), show that 
(H, g) = A~o ~ $1o. Hence, in this situation R is not a connected graph and a connectivity 
component R of R consists of  [A1o:A 3] = 10!/6 = 604,800 vertices. 

Model liB. Here, H = (hi), cosets H and Hff represent a pair of  adjacent 
vertices of a reaction graph R. We must investigate the group (H, ~) = (hi, g). This 
group is transitive, too. We calculate t4 = hi ~, = (1, 8, 4, 5, 7, 2, 10) (3, 9) (6); t 4 has 
order 14. The same arguments as above show that (H, ~) is a primitive permutation 
group. Then we show that (H, ~,) = A10 or $1o, and, according to the fact that ~ ~ (H, ~) 
is an odd permutation, we conclude that (H, ~,) = $10. Hence, in this case the reaction 
graph R is connected, A' = R and R consists of 10!/3 = 1,209,600 vertices. 

Thus, we have three different models: the first and second models imply that 
the size of the connectivity component is equal to 10!/6, while the third model implies 
a size 10!/3. The natural question arises: which model is more adequate? We do 
not want to discuss this question in full here. As was mentioned, it must be the topic 
of  a special paper. The only aim of this section was to demonstrate, on the classical 
case of bullvalene, the possibilities of  the group-theoretical technique. 

7. Conclusions 

In this paper, we have given a criterion for the connectivity of a vertex- and 
edge-transitive graph and have shown how this criterion can be transformed into a 
criterion for the connectivity of a reaction graph of highly degenerate rearrangements. 
We have demonstrated the abilities of  the criterion on several examples. It turns out 
that in the case where different vertices of a reaction graph correspond to different 
numberings of a molecular graph, there is no difficulty in describing the connectivity 
component of the reaction graph. 

The case of bullvalene demonstrates another situation: there are three different 
models to construct the reaction graph here. Two of these models give v = 10!/6 
vertices in a connectivity component, while the third gives a twice larger size of  
the component. The question about which is the most adequate model remains open 
here. We shall consider it in a special publication. 

The case of a Cope-type rearrangement in the p3- ion is very similar to the 
bullvalene case. Here, a subgroup H = Aut(F) consists only of even permutations, 
while a permutation g, which transposes two different numberings (adjacent in a 
reaction graph), is odd. For this reason, it is easy to show that model I produces 

= R with v = 7!/6 = 840 vertices, while model II gives R = R too, but in the latter 
situation, v = 7!/3 = 1680 vertices. Model II was investigated in [6] with the aid 
of a computer. The connectivity of a reaction graph was proved in [6] on a combinatorial 
basis. Additionally, it was shown that the reaction graph has a diameter d = 14 and 
that two vertices, which, represent the enantiomers, corresponding to the same numbering 
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of the molecular graph, are antipodal, i.e. the distance between these two vertices 
takes the maximal value of 14. 

Thus, one also faces the analogous problem of comparing the two possible 
models. The authors of [6] stressed that their model represents only the hypothetical 
mechanism of a rearrangement process, but they did not provide the direct arguments 
why especially this model was preferred. We think that the question merits discussion, 
as in the previous case of bullvalene. We want to stress that in all other cases of 
highly degenerate rearrangements that were considered in the literature, model I 
was always preferred. Perhaps this model is not necessarily adequate in all situations, 
but the preference must be motivated on a sufficiently rigorous level, using both 
chemical and mathematical arguments. Finally, we draw the reader's attention to the 
fact that the question of the size of a connectivity component of a reaction graph 
was also discussed in [6]. In particular, it was mentioned in ref. [17] of this paper 
that Dr. R.A. Davidson and Prof. P.S. Wharton had clarified that the bullvalene 
reaction graph is connected and consists of 10!/3 vertices; unfortunately, no arguments 
for such a decision were given. We agree with the authors of [6] that the most 
interesting case will be if the reaction graph constructed by means of model I (in 
the sense of this paper) contains two connectivity components. No example having 
this feature is known to us. However, such an example, if it really exists, will 
demonstrate a new kind of chirality: two separate fluxional worlds of "numerational 
isomers". 

As was mentioned, this paper is the first in a planned series of publications. 
In the forthcoming papers, we hope to consider several interesting large reaction 
graphs. The question about the full automorphism group of reaction graphs will also 
be treated, and a new technique for finding the so-called 2-closure of permutation 
groups will be applied. This technique was developed in close collaboration with 
M.E. Muzichuk. Preliminary information about this technique is presented in [20]. 

8. Additional comments 

This short section has been added to the revised version of our paper in reply 
to the (non-anonymous) referee's review, written by Douglas J. Klein. A number 
of changes proposed in his review helped us to make the text Clearer. In addition 
to this review, we received a copy of an unpublished paper [33], which was written 
a decade before the present paper. It follows from this manuscript and from the 
above-mentioned comment of Dr. R.A. Davidson that model lIB (in our notation) 
is the most preferable; this means that in Randid-Klein's opinion, the connectivity 
component of the reaction graph consists of 10!/3 vertices. 

The only question is the selection of a permutation in model IIB which 
represents a coset adjacent to the coset H. Instead of our permutation ,~ = (1, 8) (2, 5) 
(3, 10) (4, 9) (6, 7), Randi(: and Klein use the other permutation (1, 8, 4, 5, 7, 2, 10) (3, 9) (6) 

- it is t 4 = hi g in our notation. Obviously, every permutation of H~ can be used 
as a representative; hence, there is really no essential difference in our selections. 
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Another interesting detail lies in the fact that the authors of [33] have previously 
used just the permutation g and hence model IIA in our notation. This surprising 
coincidence of our ways seems to be pleasant for both groups. 

In this connection, we want to stress once again that our consideration of  the 
bullvalene case in section 6 is an illustrative one. We deliberately compare three 
different models in order to expose vividly all possible difficulties. The selection 
of  an adequate model requires two separate decisions: one about the subgroup H 
and one about the coset which is adjacent to H in the reaction graph. These questions 
are of  a special nature, which is not the subject of  this paper. Some of  them will 
be discussed in [34], but the complete analysis of  the bullvalene case is worthy of  
careful consideration in a special paper. In our opinion, such a paper could be the 
result of  a collaboration of both groups having experience in this field. 
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